THE ISOLATION AND STRUCTURE OF ${\rm C}_{19} ext{-}{\rm OBTUSILACTONE}$ DIMER

Masatake NIWA, Masanobu IGUCHI, and Shosuke YAMAMURA* Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468

 C_{19} -Obtusilactone dimer, a cytotoxic substance, has been isolated from <u>Lindera obtusiloba</u> Blume, and its structure also been elucidated on the basis of its spectral data coupled with chemical evidence.

In connection with antitumor substances, we have isolated the cytotoxic compounds with a novel Γ -lactone grouping from <u>Lindera obtusiloba</u> Blume ("Dankobai" in Japanese). 1,2 We further examined chemical components of the same plant, and could isolate C_{19} -obtusilactone dimer (1).

According to the same procedure as described in the previous paper, 2 the benzene extracts of the fresh leaves of the above plant were roughly separated by repeated column chromatography on silica gel and then on Florisil using CHCl $_3$ as an eluent. Further separation was carried out by repeated preparative TLC [1) Kieselgel 60 PF $_{254}$. 2) 10% AgNO $_3$ - Kieselgel 60 PF $_{254}$] using benzene - EtOAc (3 : 1) to give four fractions. The second less polar fraction was further purified by preparative TLC (Kieselgel PF $_{254}$; 10% Et $_2$ O - CHCl $_3$) to give colorless crystals of C_{19} -obtusilactone dimer (1) in a 0.0054% yield.

 C_{19} -Obtusilactone dimer (1), mp 62 - 63°C (from hexane), has a molecular formula $C_{38}H_{64}O_6$ [m/e 616(M⁺)] with the following spectral data: [ω]_D^{23°} = +42.7° (c = 0.867 in CHCl₃); γ _{max} (CHCl₃) 3440, 1790, 1725 and 1680cm⁻¹; γ _{max} (MeOH) 221nm (ϵ , 18100); γ (CDCl₃) 0.89(6H, t, J= 6.0Hz), 1.28(44H, br.s), 2.18(3H, s), 2.52(2H, q, J= 7.0Hz), 2.81(2H, q, J= 7.5Hz), 4.02(1H, d, J= 3.0Hz), OH), 4.54(1H, d, J= 3.0Hz) (this doublet is changed to a sharp singlet on addition of D₂O), 4.66 (1H, dd, J= 3.0, 1.5Hz), 4.94(1H, dd, J= 3.0, 1.5Hz), 6.18(1H, br.s), 6.37(1H, t, J= 7.0Hz) and 6.72(1H, td, J= 7.5, 2.0Hz),

From the above spectral data, this dimer has the same Y-lactone grouping as that of obtusilactone A (2). Clearly, the NMR spectrum of the former has the signals corresponding to those of 2 except for the following point: 2 has the NMR signal at δ 5.22, while 1 has the corresponding signal at δ 6.18, suggesting that the latter has a -CH-O-CO-R grouping. Furthermore, on the basis of the NMR signals at δ 6.72 and 2.81, this dimer adopts the same geometry as that of obtusilactone A $(\delta$ 6.68 and 2.78) at the tri-substituted double bond conjugated with the lactone CO group.

On homogeneous catalytic hydrogenation using Rh(Ph_zP)_zC1 in benzene (room temp, 30min), this dimer was converted into a dihydro compound (3) in a 51% yield [mp 64 - 66.5°C (from hexane) $C_{38}H_{66}O_{6}$ [m/e $618(M^{+})$]; ν_{max} (CHCl $_{3}$) 3450, 1765, 1730 and 1675cm $^{-1}$; λ_{max} (MeOH) 219nm (£, 19800); δ (CDC1₇) 0.89(6H, t, J \simeq 6Hz), 1.30(47H, br.s), 2.19(3H, s), 2.48(2H, q, J= 7.5Hz), 2.76(2H, q, J= 7.5Hz), 4.00(1H, d, J= 4.0Hz, OH), 4.52(1H, d, J= 4.0Hz) (this doublet is changed to a sharp singlet on addition of D_2O), 4.66(1H, quintet, J= 6.0Hz), 6.36(1H, t, J= 7.5Hz) and 6.67(1H, t, J= 7.5Hz)]. In the case of catalytic hydrogenation using PtO, in EtOAc (room temp, 3h), hydrogenolysis took place to give a saturated lactone (4) in a 59% yield [mp 49 - 53°C (from hexane); $C_{19}^{H}_{36}^{O}_{2}$ [m/e 296(M⁺)]; γ_{max} (CHCl₃) 1775cm⁻¹; $(CDCl_{3})$ 0.89(3H, t, J \simeq 6Hz), 1.27(26H, br.s), 1.43(3H, d, J= 6.0Hz), 2.56(3H, complex) and 4.50(1H, m)].

Thus, the structure of C_{10} -obtusilactone dimer is established as 1 on the basis of its remaining NMR signals (& 2.18, 2.52, 4.02, 4.54 and 6.37) except for the signals corresponding to those of obtusilactone A (2). In the structure of 1, the geometry at the tri-substituted double bond conjugated with the ester CO group is based on the δ -value of the olefinic proton (δ 6.37).

Cytotoxic activity of C_{19} -obtusilactone dimer (1) is also observed, but lower than that of the corresponding C_{19} -lactone, obtusilactone A (2). Further studies on this point are in progress.

References

- M. Niwa, M. Iguchi, and S. Yamamura, Tetrahedron Lett., 1975, 1539.
 M. Niwa, M. Iguchi, and S. Yamamura, Chem. Lett., 1975, 655.
 In the case of isoobtusilactone A, a geometrical isomer at the tri-substituted double bond, two NMR signals are observed at \$7.05 and 2.46.
 Methyl angelate has an olefinic proton signal at observed at \$6.72 in the case of methyl tiglate. Therefore, this dimer (1) should have the same geometry as that of the former, because the olefinic proton in 1 is much deshielded by an CH-COCH(OH)-grouping. an CH₂COCH(OH) - grouping.
- 5. M.D. Nair and R. Adams, J. Amer. Chem. Soc., 83, 922 (1961).